PROBLEM

A function
$$g(x)$$
 is defined as $g(x) = \frac{1}{4}f(2x^2-1) + \frac{1}{2}f(1-x^2)$ and $f'(x)$ is an increasing function. Then $g(x)$ is increasing in the interval

c.
$$\left(-\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}\right)$$

b.
$$\left(-\sqrt{\frac{2}{3}},0\right)\cup\left(\sqrt{\frac{2}{3}},\infty\right)$$

d. none of these

SOLUTION

b.
$$g'(x) = xf'(2x^2 - 1) - xf'(1 - x^2) = x(f'(2x^2 - 1) - f'(1 - x^2))$$

 $g'(x) > 0$

If x > 0, $2x^2 - 1 > 1 - x^2$ (as f' is an increasing function)

or
$$3x^2 > 2$$
 or $x \in \left(-\infty, -\sqrt{\frac{2}{3}}\right) \cup \left(\sqrt{\frac{2}{3}}, \infty\right)$

or
$$x \in \left(\sqrt{\frac{2}{3}}, \infty\right)$$

If
$$x < 0$$
, $2x^2 - 1 < 1 - x^2$

or
$$3x^2 < 2$$
 or $x \in \left(-\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}\right)$ or $x \in \left(-\sqrt{\frac{2}{3}}, 0\right)$